Encoder-decoder transformer architectures have become popular recently with the advent of T5 models. It is also more favorable over architectures like BERT for pre-training on language model task when it comes to large scale models which could take months to train given it's generality. While being able to generalize to more tasks, it is not evident if the proposed encoder-decoder architecture is the most efficient for fine-tuning on classification and regression tasks given the pre-trained model. In this work, we study fine-tuning pre-trained encoder-decoder models such as T5. Particularly, we propose \textbf{EncT5} as a way to efficiently fine-tune pre-trained encoder-decoder T5 models for classification and regression tasks by using the encoder layers. Our experimental results show that \textbf{EncT5} with less than half of the parameters of T5 performs similarly to T5 models on GLUE benchmark. We believe our proposed approach can be easily applied to any pre-trained encoder-decoder model.
翻译:随着T5 模型的出现, 编码器- 编码器变异器结构最近变得非常受欢迎。 当涉及到大型模型时, 可能需要几个月才能培训的大规模模型, 这比BERT更有利于语言模型任务的培训前培训。 虽然能够概括到更多的任务, 但还不清楚拟议的编码器- 编码器变异器结构是否对于根据预先培训的模型对分类和回归任务进行微调最为有效。 在这项工作中, 我们研究了诸如 T5 等经过预先训练的编码器变异模型的微调。 特别是, 我们提议了\ textbf{ EncT5}, 以此作为通过使用编码器层来有效微调经过训练的编码器变异器变形和回归任务的方法。 我们的实验结果表明, T5 参数中只有不到一半的参数在GLUE 基准上与 T5 模型相似。 我们相信, 我们提出的方法可以很容易应用到任何经过训练前的编码器变异器变异器模型。