In this work, we propose a communication-efficient parameterization, FedPara, for federated learning (FL) to overcome the burdens on frequent model uploads and downloads. Our method re-parameterizes weight parameters of layers using low-rank weights followed by the Hadamard product. Compared to the conventional low-rank parameterization, our FedPara method is not restricted to low-rank constraints, and thereby it has a far larger capacity. This property enables to achieve comparable performance while requiring 3 to 10 times lower communication costs than the model with the original layers, which is not achievable by the traditional low-rank methods. The efficiency of our method can be further improved by combining with other efficient FL optimizers. In addition, we extend our method to a personalized FL application, pFedPara, which separates parameters into global and local ones. We show that pFedPara outperforms competing personalized FL methods with more than three times fewer parameters.


翻译:在这项工作中,我们提出一个通信效率参数化,即FedPara,用于联合学习(FL),以克服频繁的模型上传和下载的负担。我们的方法是用低级别重量重新校准层的重量参数,然后采用Hadamard产品。与传统的低级别参数化相比,我们的FedPara方法不限于低级别限制,因此其容量要大得多。这个属性可以实现可比的性能,而需要比原层次的模型低3到10倍的通信成本,而原层次是传统的低级别方法所无法实现的。我们的方法效率可以通过与其他高效的FL优化器相结合得到进一步提高。此外,我们将我们的方法推广到个性化的FL应用程序,pFedPara,它将参数分为全球和地方参数。我们显示,pFedPara比个人化的FL方法要高三倍多,比参数少三倍多。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
45+阅读 · 2019年12月20日
Federated Learning with Personalization Layers
Arxiv
4+阅读 · 2019年12月2日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年12月21日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
45+阅读 · 2019年12月20日
Federated Learning with Personalization Layers
Arxiv
4+阅读 · 2019年12月2日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员