We derive a priori error of the Godunov method for the multidimensional Euler system of gas dynamics. To this end we apply the relative energy principle and estimate the distance between the numerical solution and the strong solution. This yields also the estimates of the $L^2$-norm of errors in density, momentum and entropy. Under the assumption that the numerical density and energy are bounded, we obtain a convergence rate of $1/2$ for the relative energy in the $L^1$-norm. Further, under the assumption -- the total variation of numerical solution is bounded, we obtain the first order convergence rate for the relative energy in the $L^1$-norm. Consequently, numerical solutions (density, momentum and entropy) converge in the $L^2$-norm with the convergence rate of $1/2$. The numerical results presented for Riemann problems are consistent with our theoretical analysis.


翻译:我们先验地得出了气体动态多维 Euler 系统Godunov 方法的误差。为此目的,我们应用相对能源原则,并估计数字溶液与强力溶液之间的距离。这也得出密度、动力和英特罗比误差以0.2美元为单位的估算值。根据数字密度和能量受约束的假设,我们获得了1/2美元相对能量的汇合率。此外,根据这一假设,数字溶液的总变异是受约束的,我们获得了以$1美元为单位的相对能量第一级汇合率。因此,以1/2美元为单位的数字溶剂(密度、动力和酶)与1/2美元汇合率的数值溶液。里曼问题的数字结果与我们的理论分析是一致的。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
【硬核书】演化、信息和复杂性的数学分析,504页pdf
专知会员服务
82+阅读 · 2021年9月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
179+阅读 · 2020年9月12日
专知会员服务
53+阅读 · 2020年3月16日
专知会员服务
159+阅读 · 2020年1月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员