In this paper, we first introduce the notion of generalized $b$-weights of $[n,k]$-linear codes over finite fields, and obtain some basic properties and bounds of generalized $b$-weights of linear codes which is called Singleton bound for generalized $b$-weights in this paper. Then we obtain a necessary and sufficient condition for an $[n,k]$-linear code to be a $b$-MDS code by using generator matrixes of this linear code and parity check matrixes of this linear code respectively. Next a theorem of a necessary and sufficient condition for a linear isomorphism preserving $b$-weights between two linear codes is obtained, in particular when $b=1$, this theorem is the MacWilliams extension theorem. Then we give a reduction theorem for the MDS conjecture. Finally, we calculate the generalized $b$-weight matrix $D(C)$ when $C$ is simplex codes or two especial Hamming codes.
翻译:在本文中,我们首先引入了“$[n,k]$-线性代码”的通用美元重量对有限字段的概念,并获得了一些基本属性和线性代码“Unitton”的通用比重,即本文中称为“Sloneton”的“Sloneton”对通用比重。然后,我们获得了一个必要和充分的条件,使$[n,k]-线性代码成为$b$-MDS的代码,方法是分别使用这一线性代码的生成器矩阵和这一线性代码的对等检查矩阵。接着,我们计算出线性单性单性单体主义的一个必要和充分条件,在两种线性代码之间保持美元比重,特别是当美元=1美元时,这个理论就是“MacWillims”扩展“Theorem”。然后,当$C$是简单的代码或两个特殊哈明代码时,我们计算了通用的美元重量矩阵$(C)$。