Motivated by applications in machine learning and archival data storage, we introduce function-correcting codes, a new class of codes designed to protect a function evaluation of the data against errors. We show that function-correcting codes are equivalent to irregular-distance codes, i.e., codes that obey some given distance requirement between each pair of codewords. Using these connections, we study irregular-distance codes and derive general upper and lower bounds on their optimal redundancy. Since these bounds heavily depend on the specific function, we provide simplified, suboptimal bounds that are easier to evaluate. We further employ our general results to specific functions of interest and compare our results to standard error-correcting codes which protect the whole data.
翻译:在机器学习和档案数据存储应用的推动下,我们引入了功能校正代码,这是一种旨在保护数据不受错误影响的功能评估的新型代码。我们显示功能校正代码相当于非常规远程代码,即符合每对编码词之间一定距离要求的代码。我们利用这些连接,研究非常规远程代码,并得出其最佳冗余的一般上下限。由于这些界限在很大程度上取决于具体功能,我们提供了简化的、最不理想的界限,便于评估。我们进一步将我们的总体结果用于特定的兴趣功能,并将我们的结果与保护整个数据的标准错误校正代码进行比较。