Interference exists when a unit's outcome depends on another unit's treatment assignment. For example, intensive policing on one street could have a spillover effect on neighboring streets. Classical randomization tests typically break down in this setting because many null hypotheses of interest are no longer sharp under interference. A promising alternative is to instead construct a conditional randomization test on a subset of units and assignments for which a given null hypothesis is sharp. Finding these subsets is challenging, however, and existing methods are limited to special cases or have limited power. In this paper, we propose valid and easy-to-implement randomization tests for a general class of null hypotheses under arbitrary interference between units. Our key idea is to represent the hypothesis of interest as a bipartite graph between units and assignments, and to find an appropriate biclique of this graph. Importantly, the null hypothesis is sharp within this biclique, enabling conditional randomization-based tests. We also connect the size of the biclique to statistical power. Moreover, we can apply off-the-shelf graph clustering methods to find such bicliques efficiently and at scale. We illustrate our approach in settings with clustered interference and show advantages over methods designed specifically for that setting. We then apply our method to a large-scale policing experiment in Medellin, Colombia, where interference has a spatial structure.


翻译:当一个单位的结果取决于另一个单位的治疗任务时,就存在干扰。例如,在一个街道上密集的维持治安可能会对邻近的街道产生外溢效应。典型的随机随机化测试通常在这种环境下破裂,因为许多无关的假设不再受到干扰。一个大有希望的替代办法是,对一组单位和任务进行有条件的随机化测试,而对于这些单位和任务来说,一个特定的假设是完全无效的。但是,发现这些子组具有挑战性,现有方法仅限于特殊情况或权力有限。此外,在本文中,我们提议对不同单位之间任意干涉下的一整类完全无效的假设进行有效和易于执行的随机化测试。我们的主要想法是将利益假设作为单元和任务之间的双向图,并找到这个图的适当两面图。重要的是,这个无效的假设是在这个小块内很尖锐,使得有条件的随机化测试成为可能。我们还把两层的大小与统计力量联系起来。此外,我们可以应用现式的图形组合组合组合方法来找到这种精准和规模的纯粹假设。我们所设计了一种大空间干预方法,我们用来在哥伦比亚进行空间上的试验。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年11月17日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
生物探索
3+阅读 · 2018年2月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
生物探索
3+阅读 · 2018年2月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员