Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use distributionally robust optimization to account for uncertainty due to the limited samples. By leveraging large deviation results, we obtain explicit generalization bounds with respect to the unknown shifted distribution. Lastly, we demonstrate the versatility of our framework by demonstrating it on two rather distinct applications: (1) training classifiers on systematically biased data and (2) off-policy evaluation in Markov Decision Processes.
翻译:在分布式转换中表现良好的培训模式是机器学习的一个中心挑战。在本文中,我们引入了一个模型框架,其中除了培训数据外,我们还对转换的测试分布有部分结构知识。我们采用了最低限度歧视性信息原则,以嵌入现有的先前知识,并使用分布式强的优化,以说明由于样本有限而造成的不确定性。通过利用巨大的偏差结果,我们对未知的转移分布有明确的概括性约束。最后,我们通过两种截然不同的应用展示了我们的框架的多功能性:(1) 培训分类人员了解系统性偏差数据,(2) 在Markov决策程序中进行非政策评价。