Humans naturally change their environment through interactions, e.g., by opening doors or moving furniture. To reproduce such interactions in virtual spaces (e.g., metaverse), we need to capture and model them, including changes in the scene geometry, ideally from egocentric input alone (head camera and body-worn inertial sensors). While the head camera can be used to localize the person in the scene, estimating dynamic object pose is much more challenging. As the object is often not visible from the head camera (e.g., a human not looking at a chair while sitting down), we can not rely on visual object pose estimation. Instead, our key observation is that human motion tells us a lot about scene changes. Motivated by this, we present iReplica, the first human-object interaction reasoning method which can track objects and scene changes based solely on human motion. iReplica is an essential first step towards advanced AR/VR applications in immersive virtual universes and can provide human-centric training data to teach machines to interact with their surroundings. Our code, data and model will be available on our project page at http://virtualhumans.mpi-inf.mpg.de/ireplica/


翻译:人类自然而然地通过的交互方式改变自己的环境,例如打开门或移动家具。为了在虚拟空间(如元宇宙)中再现这样的交互,我们需要捕捉和建模它们,包括场景几何的变化,最好仅凭自身输入(头戴相机和身体佩戴的惯性传感器)。虽然头戴相机可以用于定位场景中的人,但估计动态物体的姿态更具有挑战性。由于物体通常从头戴相机处不可见(例如人不看椅子而坐下时),我们不能依赖于视觉物体姿态估计。相反,我们的关键观察是人类动作告诉我们很多有关场景变化的信息。基于这个观察结果,我们提出了iReplica,这是第一个能够仅基于人类动作来追踪物体和场景变化的人物与物体交互推理方法。iReplica是走向沉浸式虚拟宇宙的高级 AR/VR 应用的关键第一步,并且可以提供人的中心化训练数据以教授机器与其周围环境交互的方式。我们的代码、数据和模型将在我们的项目页面http://virtualhumans.mpi-inf.mpg.de/ireplica/上提供。

0
下载
关闭预览

相关内容

【CVPR2022】OakInk:理解手-物体交互的大规模知识库
专知会员服务
14+阅读 · 2022年4月6日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员