We discuss some highlights of our computer-verified proof of the construction, given a countable transitive set-model $M$ of $\mathit{ZFC}$, of generic extensions satisfying $\mathit{ZFC}+\neg\mathit{CH}$ and $\mathit{ZFC}+\mathit{CH}$. Moreover, let $\mathcal{R}$ be the set of instances of the Axiom of Replacement. We isolated a 21-element subset $\Omega\subseteq\mathcal{R}$ and defined $\mathcal{F}:\mathcal{R}\to\mathcal{R}$ such that for every $\Phi\subseteq\mathcal{R}$ and $M$-generic $G$, $M\models \mathit{ZC} \cup \mathcal{F}\text{``}\Phi \cup \Omega$ implies $M[G]\models \mathit{ZC} \cup \Phi \cup \{ \neg \mathit{CH} \}$, where $\mathit{ZC}$ is Zermelo set theory with Choice. To achieve this, we worked in the proof assistant Isabelle, basing our development on the Isabelle/ZF library by L. Paulson and others.
翻译:我们讨论我们计算机验证的构建中一些亮点。 我们分离了21个元素子集 $\ omega\ subsetequal{ mathal}$, 定义了$mathcal{F}:\ mathal{R\\\ mathit{CH} 美元和$mathitatt{m{R}$。 此外, 让$mathcal{R} $成为替换的典型。 我们分离了21个元素子集 $\ omega\ subsetequal{ mathal{R} 美元, 定义了$mathcal{F}\to\ mathal{R} 美元, 满足了每个$\ subseteqreeteq\ mall} $G$, $M\ mathicattit} 建立我们的图书馆_\ clog_C_combreault_Broom___BYC\\\\\ cup the crual__BY___