In this work we estimate the number of randomly selected elements of a tensor that with high probability guarantees local convergence of Riemannian gradient descent for tensor train completion. We derive a new bound for the orthogonal projections onto the tangent spaces based on the harmonic mean of the unfoldings' singular values and introduce a notion of core coherence for tensor trains. We also extend the results to tensor train completion with side information and obtain the corresponding local convergence guarantees.
翻译:在这项工作中,我们估计了随机选择的、极有可能保证里曼尼梯度下降与当地接轨以完成高压列车的强点元素的数量。我们根据单值的调和平均值得出了对正方位投影到相近空间的新的定线,并对高压列车引入了核心一致性概念。我们还将结果推广到带侧边信息完成的高压列车,并获得相应的当地趋同保证。