Seminal works on light spanners from recent years provide near-optimal tradeoffs between the stretch and lightness of spanners in general graphs, minor-free graphs, and doubling metrics. In FOCS'19 the authors provided a "truly optimal" tradeoff for Euclidean low-dimensional spaces. Some of these papers employ inherently different techniques than others. Moreover, the runtime of these constructions is rather high. In this work, we present a unified and fine-grained approach for light spanners. Besides the obvious theoretical importance of unification, we demonstrate the power of our approach in obtaining (1) stronger lightness bounds, and (2) faster construction times. Our results include: _ $K_r$-minor-free graphs: A truly optimal spanner construction and a fast construction. _ General graphs: A truly optimal spanner -- almost and a linear-time construction with near-optimal lightness. _ Low dimensional Euclidean spaces: We demonstrate that Steiner points help in reducing the lightness of Euclidean $1+\epsilon$-spanners almost quadratically for $d\geq 3$.
翻译:近些年来,光弹手的局部工程在一般图形、无光图形和双倍度测量仪中,提供了射弹手的伸展度和亮度之间的近乎最佳的权衡。在FOCS'19中,作者为欧洲光弹手低维空间提供了“绝对最佳”的权衡。其中一些论文使用了本质上不同的技术。此外,这些建筑的运行时间相当高。在这项工作中,我们为光弹手提供了一种统一和精细的区分方法。除了统一在理论上的明显重要性外,我们还展示了我们的方法在获得(1)更强的光度界限和(2)更快的建筑时间方面的力量。我们的成果包括:_$_r$-minor-freater 图形:一个真正最佳的光速构造和快速的构造。_ 通用图表:一个真正最优的拉弹手 -- 几乎和一个近于最优光度的线性建筑。_ 低度Euclide Euidean空间:我们证明Steina点帮助降低Euclidean $$ 3Qqpan。