This paper presents a simultaneous localization and map-assisted environment recognition (SLAMER) method. Mobile robots usually have an environment map and environment information can be assigned to the map. Important information for mobile robots such as no entry zone can be predicted if localization has succeeded since relative pose of them can be known. However, this prediction is failed when localization does not work. Uncertainty of pose estimate must be considered for robustly using the map information. In addition, robots have external sensors and environment information can be recognized using the sensors. This on-line recognition of course contains uncertainty; however, it has to be fused with the map information for robust environment recognition since the map also contains uncertainty owing to over time. SLAMER can simultaneously cope with these uncertainties and achieves accurate localization and environment recognition. In this paper, we demonstrate LiDAR-based implementation of SLAMER in two cases. In the first case, we use the SemanticKITTI dataset and show that SLAMER achieves accurate estimate more than traditional methods. In the second case, we use an indoor mobile robot and show that unmeasurable environmental objects such as open doors and no entry lines can be recognized.
翻译:本文展示了同步本地化和地图辅助环境识别(SLAMER)方法。 移动机器人通常拥有环境地图, 环境信息可以被分配到地图上。 移动机器人的重要信息, 如没有进入区等, 如果本地化在相对的构成上是已知的, 则无法预测。 但是, 当本地化不起作用时, 此预测失败了。 必须在使用地图信息时考虑以稳健的方式进行构成估计的不确定性。 此外, 机器人拥有外部传感器和环境信息, 并且使用传感器来识别。 这种在线识别包含不确定性; 但是, 它必须和地图信息连接起来, 以便进行稳健的环境识别, 因为由于时间过长, 地图也含有不确定性 。 SLAMER 能够同时应对这些不确定性, 并实现准确的本地化和环境识别 。 在本文中, 我们演示了基于本地化的 SLAMER 在两起案件中的实施 。 在第一个案例中, 我们使用SmantikITTI 数据集, 并显示 SLMER 能够比传统方法更准确的估计 。 在第二个案例中, 我们使用室内移动机器人, 并显示无法测量的环境物体, 如开门和不入行 。