Processing-In-Memory (PIM) is a novel approach that augments existing DRAM memory chips with lightweight logic. By allowing to offload computations to the PIM system, this architecture allows for circumventing the data-bottleneck problem that affects many modern workloads. This work tackles the problem of how to build efficient software implementations of the Transactional Memory (TM) abstraction by introducing PIM-STM, a library that provides a range of diverse TM implementations for UPMEM, the first commercial PIM system. Via an extensive study we assess the efficiency of alternative choices in the design space of TM algorithms on this emerging architecture. We further quantify the impact of using different memory tiers of the UPMEM system (having different trade-offs for what concerns latency vs capacity) to store the metadata used by different TM implementations. Finally, we assess the gains achievable in terms of performance and memory efficiency when using PIM-STM to accelerate TM applications originally conceived for conventional CPU-based systems.
翻译:暂无翻译