This paper considers an information bottleneck problem with the objective of obtaining a most informative representation of a hidden feature subject to a R\'enyi entropy complexity constraint. The optimal bottleneck trade-off between relevance (measured via Shannon's mutual information) and R\'enyi entropy cost is defined and an iterative algorithm for finding approximate solutions is provided. We also derive an operational characterization for the optimal trade-off by demonstrating that the optimal R\'enyi entropy-relevance trade-off is achievable by a simple time-sharing scalar coding scheme and that no coding scheme can provide better performance. Two examples where the optimal Shannon entropy-relevance trade-off can be exactly determined are further given.
翻译:本文考虑了信息瓶颈问题,目的是在受R\'enyi entropy复杂度限制的情况下,对隐蔽特征进行最丰富的信息描述。界定了相关性(通过香农的相互信息衡量)和R\'enyi entropy之间最佳瓶颈权衡成本,并提供了寻找近似解决办法的迭代算法。我们通过证明最佳R\'enyi entropy-相关性交易可以通过简单的时间共享标价方案实现,而没有编码方案能够提供更好的性能。我们还提供了两个实例,可以确切确定最佳的香农的伦-entropy-realenti-realtical-trafference交易。