Gamma process has been extensively used to model monotone degradation data. Statistical inference for the gamma process is difficult due to the complex parameter structure involved in the likelihood function. In this paper, we derive a conjugate prior for the homogeneous gamma process, and some properties of the prior distribution are explored. Three algorithms (Gibbs sampling, discrete grid sampling, and sampling importance resampling) are well designed to generate posterior samples of the model parameters, which can greatly lessen the challenge of posterior inference. Simulation studies show that the proposed algorithms have high computational efficiency and estimation precision. The conjugate prior is then extended to the case of the gamma process with heterogeneous effects. With this conjugate structure, the posterior distribution of the parameters can be updated recursively, and an efficient online algorithm is developed to predict remaining useful life of multiple systems. The effectiveness of the proposed online algorithm is illustrated by two real cases.
翻译:Gamma 工艺被广泛用于模拟单质降解数据。由于概率函数涉及复杂的参数结构,伽马过程的统计推论很困难。在本文中,我们先得出同质伽马过程的同系物,然后探讨先前分布的某些特性。三种算法(Gibbs取样、离散网格取样和取样重要性再取样)设计得很好,可以产生模型参数的后方样本,这可以大大减轻后方推论的挑战。模拟研究表明,提议的计算法具有很高的计算效率和估计精确度。之前的同系物将扩展至具有不同效果的伽马过程。有了这种同系物结构,参数的后方分布可以循环更新,并开发了一种高效的在线算法,以预测多种系统的剩余有用寿命。两个真实案例说明了拟议的在线算法的有效性。