We reexamine the the classical multidimensional scaling (MDS). We study some special cases, in particular, the exact solution for the sub-space formed by the 3 dimensional principal coordinates is derived. Also we give the extreme case when the points are collinear. Some insight into the effect on the MDS solution of the excluded eigenvalues (could be both positive as well as negative) of the doubly centered matrix is provided. As an illustration, we work through an example to understand the distortion in the MDS construction with positive and negative eigenvalues.
翻译:我们重新审视经典的多维缩放(MDS) 。 我们研究了一些特殊案例, 特别是3维主坐标构成的子空间的确切解决方案已经产生。 我们还给出了当点为共线时的极端案例。 提供了一些关于双向中心矩阵( 可以是正的,也可以是负的) 的对MDS 解决方案的影响的洞察。 举例来说, 我们通过一个范例来理解MDS构建过程中的扭曲, 以正的和负的双向的 egen值来理解 MDS 构建过程的扭曲。