Multilingual intelligent assistants, such as ChatGPT, have recently gained popularity. To further expand the applications of multilingual artificial intelligence assistants and facilitate international communication, it is essential to enhance the performance of multilingual speech recognition, which is a crucial component of speech interaction. In this paper, we propose two simple and parameter-efficient methods: language prompt tuning and frame-level language adapter, to respectively enhance language-configurable and language-agnostic multilingual speech recognition. Additionally, we explore the feasibility of integrating these two approaches using parameter-efficient fine-tuning methods. Our experiments demonstrate significant performance improvements across seven languages using our proposed methods.
翻译:暂无翻译