In this paper, we propose a SOCratic model for Robots Approaching humans based on TExt System (SOCRATES) focusing on the human search and approach based on free-form textual description; the robot first searches for the target user, then the robot proceeds to approach in a human-friendly manner. In particular, textual descriptions are composed of appearance (e.g., wearing white shirts with black hair) and location clues (e.g., is a student who works with robots). We initially present a Human Search Socratic Model that connects large pre-trained models in the language domain to solve the downstream task, which is searching for the target person based on textual descriptions. Then, we propose a hybrid learning-based framework for generating target-cordial robotic motion to approach a person, consisting of a learning-from-demonstration module and a knowledge distillation module. We validate the proposed searching module via simulation using a virtual mobile robot as well as through real-world experiments involving participants and the Boston Dynamics Spot robot. Furthermore, we analyze the properties of the proposed approaching framework with human participants based on the Robotic Social Attributes Scale (RoSAS)
翻译:在本文中,我们提出了一个基于TExt系统(SOCRATES)的机器人接近人类的SOCRATIS模型(SOCRATES),该模型侧重于基于自由形式文字描述的人类搜索和方法;机器人首先对目标用户进行搜索,然后机器人开始以人友好的方式接近人;特别是,文字描述包括外观(例如,穿戴黑色头发的白色衬衫)和位置线索(例如,是一名与机器人一起工作的学生);我们最初提出一个人类搜索专家模型,该模型将语言领域的大型预先培训模型连接起来,以解决下游任务,该模型正在根据文字描述寻找目标人;然后,我们提出一个基于混合学习的框架,以生成目标-和谐机器人运动,与一个人接触,其中包括一个从演示模块和知识蒸馏模块;我们通过模拟,使用虚拟移动机器人,以及通过参与者和波士顿动态监测机器人参与的现实世界实验,来验证拟议的搜索模块。此外,我们分析了与人类参与者以机器人社会学规模(Rosical Social) 进行接近的框架的属性。