Since experiencing domain shifts during test-time is inevitable in practice, test-time adaption (TTA) continues to adapt the model during deployment. Recently, the area of continual and gradual test-time adaptation (TTA) emerged. In contrast to standard TTA, continual TTA considers not only a single domain shift, but a sequence of shifts. Gradual TTA further exploits the property that some shifts evolve gradually over time. Since in both settings long test sequences are present, error accumulation needs to be addressed for methods relying on self-training. In this work, we propose and show that in the setting of TTA, the symmetric cross-entropy is better suited as a consistency loss for mean teachers compared to the commonly used cross-entropy. This is justified by our analysis with respect to the (symmetric) cross-entropy's gradient properties. To pull the test feature space closer to the source domain, where the pre-trained model is well posed, contrastive learning is leveraged. Since applications differ in their requirements, we address different settings, namely having source data available and the more challenging source-free setting. We demonstrate the effectiveness of our proposed method 'robust mean teacher' (RMT) on the continual and gradual corruption benchmarks CIFAR10C, CIFAR100C, and Imagenet-C. We further consider ImageNet-R and propose a new continual DomainNet-126 benchmark. State-of-the-art results are achieved on all benchmarks.
翻译:由于测试时的域变在实际中是不可避免的,测试时间适应(TTA)在部署期间继续调整模型。最近,连续和逐步测试时间适应领域出现。与标准的TTA相比,持续TTA不仅考虑单一域变,而且考虑一个轮变顺序。渐进式TTA进一步开发了某些变换随着时间推移而逐渐演变的属性。由于在两种情况下都存在较长的测试序列,需要解决依赖自我培训的方法的错误积累问题。在这项工作中,我们提议并表明,在TTA的设置中,对称的跨网络在设置中,与通常使用的跨周期适应时间调整领域相比,对平均教师来说更适合成为一致性损失。与通常使用的跨周期调整相比,持续TTTTA(TA)相比,持续TTTTA认为它不仅是一个单一域变换,而且是一个轮变顺序。我们分析(对准)交叉调整的梯变换特性进一步挖掘了测试空间。在经过训练前模型的源域中,对比性学习得到利用。由于各种应用的要求不同,我们处理不同的环境,我们处理不同的问题,即有源数据可用,并且没有更具有挑战性的源数据源的源-源-R-100级的图像基准,我们提出的不断的师-RMRC-C基准。我们考虑了拟议方法的CI-RRC-C-C-C-C-C-C-C-C-C-C-C-C-递进基准。我们的方法-C-C-C-C-C-BAR-C-C-C-C-BAR-C-C-C-BAR-C-C-C-C-C-C-BAR-C-C-C-C-C-C-C-BR-C-C-C-C-C-C-C-C-C-BAR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-BAR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-