A recent literature considers causal inference using noisy proxies for unobserved confounding factors. The proxies are divided into two sets that are independent conditional on the confounders. One set of proxies are `negative control treatments' and the other are `negative control outcomes'. Existing work applies to low-dimensional settings with a fixed number of proxies and confounders. In this work we consider linear models with many proxy controls and possibly many confounders. A key insight is that if each group of proxies is strictly larger than the number of confounding factors, then a matrix of nuisance parameters has a low-rank structure and a vector of nuisance parameters has a sparse structure. We can exploit the rank-restriction and sparsity to reduce the number of free parameters to be estimated. The number of unobserved confounders is not known a priori but we show that it is identified, and we apply penalization methods to adapt to this quantity. We provide an estimator with a closed-form as well as a doubly-robust estimator that must be evaluated using numerical methods. We provide conditions under which our doubly-robust estimator is uniformly root-$n$ consistent, asymptotically centered normal, and our suggested confidence intervals have asymptotically correct coverage. We provide simulation evidence that our methods achieve better performance than existing approaches in high dimensions, particularly when the number of proxies is substantially larger than the number of confounders.


翻译:最近的一个文献认为,对于未观察到的周期性折叠因素,使用噪音的杂交来计算因果推断。代理人分为两组,两组以混杂因素为独立条件。一组替代物为“负控制处理”,另一组为“负控制结果”。现有的工作适用于低维设置,有固定数量的代理人和混杂者。在这项工作中,我们考虑的线性模型有许多代用控制器,而且可能有许多混杂因素。一个关键的见解是,如果每组代理人严格大于相纠结因素的数量,那么,一个较复杂的参数矩阵则具有低级结构,而一个含混杂参数的矢量则结构稀少。我们可以利用等级限制和宽度来减少要估计的自由参数的数量。未观察到的粘结者的数量并不为人所熟,但我们发现,我们采用惩罚性数字的方法来适应这个数量。我们提供一个封闭式的缩略图,一个较封闭的缩略图,而且覆盖范围的矩阵结构结构结构更低,而一个含混杂因素的矢测值参数结构结构结构结构结构则很少。我们可以利用等级-直观性地评估我们现有的精确度方法,而必须提供我们目前的平定的计算方法。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2020年6月12日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员