In this paper we develop a plane wave type method for discretization of homogeneous Helmholtz equations with variable wave numbers. In the proposed method, local basis functions (on each element) are constructed by the geometric optics ansatz such that they approximately satisfy a homogeneous Helmholtz equation without boundary condition. More precisely, each basis function is expressed as the product of an exponential plane wave function and a polynomial function, where the phase function in the exponential function approximately satisfies the eikonal equation and the polynomial factor is recursively determined by transport equations associated with the considered Helmholtz equation. We prove that the resulting plane wave spaces have high order $h$-approximations {\it without wave number pollution} as the standard plane wave spaces (which are available only to the case with constant wave number). We apply the proposed plane wave spaces to the discretization of nonhomogeneous Helmholtz equations with variable wave numbers and establish the corresponding error estimates of their finite element solutions. We report some numerical results to illustrate the efficiency of the proposed method.


翻译:在本文中,我们开发了一种平面波型分离等式的离散法,其中含有可变波数。在拟议方法中,本地基函数(每个元素)是由几何光学 ansatz 构建的,这样它们就可以不附带边界条件地大致满足同质赫姆霍尔茨等式。更准确地说,每个基函数表现为指数性平面波函数和多元函数的产物,其中指数性函数的相位函数大致符合eikonal等式,多元分子因子由与考虑的赫姆霍茨等式相联系的运输方程递归确定。我们证明,由此产生的平面波空间具有高等值,没有波号污染,等于等于等于等于标准平面波浪波浪波的值 。我们用拟议的平面波空间来表示非多极性海尔姆尔茨等式等式的离散化,并用可变波数确定相应的误差估计值。我们报告一些数字结果,以说明拟议方法的效率。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
59+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月26日
Arxiv
0+阅读 · 2021年2月25日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
59+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员