To deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order $\mathcal{O}(h^2)$. Next, we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results.
翻译:为了处理永久性变形和残余压力, 我们考虑皮肤创伤愈合后创伤形成的创伤形成一个光谱模型。 除了压力和偏移等机械部件外, 模型还计算生物成分, 如信号分子的浓度、 纤维倍增的细胞密度和肌膜的细胞密度, 以及碳球的密度。 我们在这里展示了这种摩擦模型的一维对应方的稳定性限制, 包括连续和( 半) 离散的问题。 我们显示, 这些与连续和半分解问题相关的电子值之间的脱轨错误是 $\ mathcal{ O}( h)2$ 。 接下来, 我们对这些限制进行数字验证, 并提供生物解释。 对于模型的机械部分, 结果表明, 组件以( 非) 单调方式达到平衡, 取决于对比值。 结果显示, 与连续和半分解问题相关的这些元素值之间的脱轨差差差是 $\ mathcal{O}( h) (h) 2 $。 我们对这些限制进行数字验证, 并提供( in) intifical redustrational restial) restiquestation resmation resulation