A nonequilibrium system is characterized by a set of thermodynamic forces and fluxes, which give rise to entropy production (EP). We demonstrate that these forces and fluxes have an information-geometric structure, which allows us to decompose EP into nonnegative contributions from different types of forces. We focus on the excess and housekeeping decomposition, which reflects contributions from conservative and nonconservative forces, in the general setting of discrete systems (linear master equations and nonlinear chemical dynamics). Unlike the nonadiabatic/adiabatic (Hatano-Sasa) approach, our decomposition is always well-defined, including in systems with odd variables and nonlinear systems without steady states. It is also operationally meaningful, leading to far-from-equilibrium thermodynamic uncertainty relations and speed limits.
翻译:无平衡系统具有一系列热力和通量的特点,这些热力和通量会产生酶生产(EP) 。 我们证明这些力量和通量具有信息地理结构,使我们能够将EP分解成不同类型力量的非负贡献。 我们侧重于超量和内存分解,这反映了保守和非保守力量在离散系统总体设置(线性主方程式和非线性化学动态)中的贡献。 与非非非亚异性/非亚异性(Hatano-Sasa)方法不同,我们的分解状态总是定义明确,包括在没有稳定状态的奇异变量和非线性系统中。 这也是具有实际意义的,导致远离平衡的热力不确定关系和速度限制。