Although approaches for handling missing data from longitudinal studies are well-developed when the patterns of missingness are monotone, fewer methods are available for non-monotone missingness. Moreover, the conventional missing at random (MAR) assumption -- a natural benchmark for monotone missingness -- does not model realistic beliefs about non-monotone missingness processes (Robins and Gill, 1997). This has provided the impetus for alternative non-monotone missing not at random (MNAR) mechanisms. The "no self-censoring" (NSC) model is such a mechanism and assumes the probability an outcome variable is missing is independent of its value when conditioning on all other possibly missing outcome variables and their missingness indicators. As an alternative to "weighting" methods that become computationally demanding with increasing number of outcome variables, we propose a multiple imputation approach under NSC. We focus on the case of binary outcomes and present results of simulation and asymptotic studies to investigate the performance of the proposed imputation approach. We describe a related approach to sensitivity analysis to departure from NSC. Finally, we discuss the relationship between MAR and NSC and prove that one is not a special case of the other. The proposed methods are illustrated with application to a substance use disorder clinical trial.
翻译:虽然当缺失模式是单质的时,处理纵向研究中缺失的数据的方法是相当发达的,但对于非单质缺失的情况,可用的方法较少。此外,随机(MAR)假设中常规缺失的方法 -- -- 单质缺失的自然基准 -- -- 并不模拟关于非单质缺失过程的现实信念(Robins和Gill,1997年)。这为非随机(MNAR)机制中未随机缺失的替代非单质缺失提供了动力。 " 不自我检查 " (NSC)模式就是这样一种机制,假设在根据所有其他可能缺失的结果变量及其缺失指标进行调整时,结果变量缺失的概率是独立于其价值的。作为 " 加权 " 方法的替代方法,随着结果变量数量的增加而变得具有计算性要求,我们提议了一种多重估算方法。我们侧重于二元结果以及目前模拟和微调研究的结果,以调查拟议的浸漏方法的绩效。我们描述了一种与脱离NSC的敏感度分析相关的方法。最后,我们讨论的是“加权”和“加权”的临床测试方法,证明一种是另一种方法。</s>