Optimal control (OC) using inverse dynamics provides numerical benefits such as coarse optimization, cheaper computation of derivatives, and a high convergence rate. However, in order to take advantage of these benefits in model predictive control (MPC) for legged robots, it is crucial to handle its large number of equality constraints efficiently. To accomplish this, we first (i) propose a novel approach to handle equality constraints based on nullspace parametrization. Our approach balances optimality, and both dynamics and equality-constraint feasibility appropriately, which increases the basin of attraction to good local minima. To do so, we then (ii) adapt our feasibility-driven search by incorporating a merit function. Furthermore, we introduce (iii) a condensed formulation of the inverse dynamics that considers arbitrary actuator models. We also develop (iv) a novel MPC based on inverse dynamics within a perception locomotion framework. Finally, we present (v) a theoretical comparison of optimal control with the forward and inverse dynamics, and evaluate both numerically. Our approach enables the first application of inverse-dynamics MPC on hardware, resulting in state-of-the-art dynamic climbing on the ANYmal robot. We benchmark it over a wide range of robotics problems and generate agile and complex maneuvers. We show the computational reduction of our nullspace resolution and condensed formulation (up to 47.3%). We provide evidence of the benefits of our approach by solving coarse optimization problems with a high convergence rate (up to 10 Hz of discretization). Our algorithm is publicly available inside CROCODDYL.
翻译:使用反向动态的优化控制(OC)提供了数字效益,例如粗优化、更廉价的衍生物计算和高趋同率。然而,为了利用这些效益,利用模型预测控制(MPC)对脱腿机器人进行模型预测控制(MPC),至关重要的是要有效地处理大量平等限制。为了实现这一目标,我们首先(一) 提出一种新的办法,处理以空空间超光化为基础的平等限制。我们的方法适当地平衡最佳性和动态及平等限制可行性,这增加了吸引到好地方微米的土壤。为了做到这一点,我们随后(二) 调整以可行性驱动的搜索,纳入一个功用功能。此外,我们引入了(三) 压缩了考虑任意动作模型的逆向动态设计。我们还开发了(四) 一个新的基于在感知超光速化框架内的反向动态动态的MPC。 最后,我们提出了(五) 将最佳控制与前向和反向动态动态动态动态对比,并用数字评估。我们的方法使得在硬件上首次应用反动动的MPC,结果在高压的轨道上产生无偏向的自动递减压的硬的机器人计算。我们高分辨率模型的模型,我们用高分辨率计算方法显示了我们的高分辨率的模型的模型的升级的模型。我们制的模型的模型的升级的模型的升级的模型的模型的模型的升级的模型的升级的模型的模型的模型的模型。