Several recent works have addressed the ability of deep learning to disclose rich, hierarchical and discriminative models for the most diverse purposes. Specifically in the super-resolution field, Convolutional Neural Networks (CNNs) using different deep learning approaches attempt to recover realistic texture and fine grained details from low resolution images. In this work we explore the viability of these approaches for iris Super-Resolution (SR) in an iris recognition environment. For this, we test different architectures with and without a so called image re-projection to reduce artifacts applying it to different iris databases to verify the viability of the different CNNs for iris super-resolution. Results show that CNNs and image re-projection can improve the results specially for the accuracy of recognition systems using a complete different training database performing the transfer learning successfully.
翻译:最近的一些著作探讨了深层学习为最多样化目的披露丰富、等级和歧视性模式的能力。具体地说,在超分辨率领域,革命神经网络(CNNs)利用不同的深层学习方法试图从低分辨率图像中恢复现实的质地和细粒细节。在这项工作中,我们探索了这些在离子识别环境中用于iris Super-分辨率(SR)的方法的可行性。为此,我们测试了不同结构,用和不用所谓的图像再投射来减少用于不同iris数据库的文物,以核实不同的CNN对iris超级分辨率的可行性。结果显示CNNs和图像再投影能够特别提高识别系统的准确性,利用一个完全不同的培训数据库成功进行传输学习。