Networks, threat models, and malicious actors are advancing quickly. With the increased deployment of the 5G networks, the security issues of the attached 5G physical devices have also increased. Therefore, artificial intelligence based autonomous end-to-end security design is needed that can deal with incoming threats by detecting network traffic anomalies. To address this requirement, in this research, we used a recently published 5G traffic dataset, 5G-NIDD, to detect network traffic anomalies using machine and deep learning approaches. First, we analyzed the dataset using three visualization techniques: t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and Principal Component Analysis (PCA). Second, we reduced the data dimensionality using mutual information and PCA techniques. Third, we solve the class imbalance issue by inserting synthetic records of minority classes. Last, we performed classification using six different classifiers and presented the evaluation metrics. We received the best results when K-Nearest Neighbors classifier was used: accuracy (97.2%), detection rate (96.7%), and false positive rate (2.2%).
翻译:暂无翻译