Contrastive self-supervised learning (CSL) has managed to match or surpass the performance of supervised learning in image and video classification. However, it is still largely unknown if the nature of the representations induced by the two learning paradigms is similar. We investigate this under the lens of adversarial robustness. Our analysis of the problem reveals that CSL has intrinsically higher sensitivity to perturbations over supervised learning. We identify the uniform distribution of data representation over a unit hypersphere in the CSL representation space as the key contributor to this phenomenon. We establish that this is a result of the presence of false negative pairs in the training process, which increases model sensitivity to input perturbations. Our finding is supported by extensive experiments for image and video classification using adversarial perturbations and other input corruptions. We devise a strategy to detect and remove false negative pairs that is simple, yet effective in improving model robustness with CSL training. We close up to 68% of the robustness gap between CSL and its supervised counterpart. Finally, we contribute to adversarial learning by incorporating our method in CSL. We demonstrate an average gain of about 5% over two different state-of-the-art methods in this domain.
翻译:自我监督的自我监督学习(CSSL)已经成功匹配或超过了在图像和视频分类中监督学习的绩效。 但是,如果两种学习模式所引发的演示性质相似,基本上还不清楚这两个模式所引发的演示的性质是否相似。 我们从对抗性强强的角度对此进行调查。 我们对这个问题的分析表明, CSL对干扰受监督的学习具有内在的更高敏感性。 我们确定CSL代表空间中一个单位超视距的数据代表的统一分布是这一现象的关键促成因素。 我们确认,这是培训过程中存在虚假的负对子的结果,这增加了对输入扰动的模型敏感性。 我们的发现得到了使用对抗性扰动和其他输入腐败对图像和视频分类的广泛实验的支持。 我们设计了一种战略来检测和清除虚假的负对子,这很简单,但有效地改善了CSLL培训的模型的稳健性。 我们关闭了CSL及其监督对应方之间68%的强性差距。 最后,我们通过将我们的方法纳入CSLL为对抗性学习作出了贡献。 我们通过在两种不同状态方法中展示了大约5 %的域域域平均收益。