Numerous voice conversion (VC) techniques have been proposed for the conversion of voices among different speakers. Although good quality of the converted speech can be observed when VC is applied in a clean environment, the quality degrades drastically when the system is run in noisy conditions. In order to address this issue, we propose a novel speech enhancement (SE)-assisted VC system that utilizes the SE techniques for signal pre-processing, where the VC and SE components are optimized in an joint training strategy with the aim to provide high-quality converted speech signals. We adopt a popular model, StarGAN, as the VC component and thus call the combined system as EStarGAN. We test the proposed EStarGAN system using a Mandarin speech corpus. The experimental results first verified the effectiveness of joint training strategy used in EStarGAN. Moreover, EStarGAN demonstrated performance robustness in various unseen noisy environments. The subjective listening test results further showed that EStarGAN can improve the sound quality of speech signals converted from noise-corrupted source utterances.
翻译:虽然在清洁环境中应用变异语言时可以观察到变异语言的质量,但当系统在吵闹的条件下运行时质量会急剧下降。为了解决这一问题,我们提议采用新的语音增强(SE)辅助变异C系统,利用SE技术进行信号预处理,使VC和SE组件在联合培训战略中得到优化,目的是提供高质量的变异语音信号。我们采用了流行模式StarGAN,作为变异语言组件,从而将合并系统称为EStarGAN。我们用普通话来测试拟议的EStarGAN系统。实验结果首先验证了EStarGAN使用的联合培训战略的有效性。此外,EStarGAN还展示了各种不为人知的噪音环境中的性能强。主观听试验结果进一步显示EStarGAN能够提高从噪音源声音变异的语音信号的音质。