We propose Waymo Open Motion Dataset-Reasoning (WOMD-Reasoning), a comprehensive large-scale dataset with 3 million Q&As built on WOMD focusing on describing and reasoning interactions and intentions in driving scenarios. Existing language datasets for driving primarily capture interactions caused by close distances. However, interactions induced by traffic rules and human intentions, which can occur over long distances, are yet sufficiently covered. To address this, WOMD-Reasoning presents by far the largest multi-modal Q&A dataset on real-world driving scenarios, covering a wide range of driving topics from map descriptions and motion status descriptions to narratives and analyses of agents' interactions, behaviors, and intentions. We further introduce Motion-LLaVA, a motion-language model fine-tuned on the proposed dataset with robust interaction reasoning capabilities. We benchmark its performance across various configurations including different input modalities, reasoning techniques, and network architectures. The robust, diverse, and multi-modal nature of WOMD-Reasoning highlights its potential to advance future autonomous driving research and enable a broad range of applications. The dataset and its vision modal extension are available at https://waymo.com/open/download, and the codes & prompts to build it are available at https://github.com/yhli123/WOMD-Reasoning.
翻译:暂无翻译