Wire harnesses are essential connecting components in manufacturing industry but are challenging to be automated in industrial tasks such as bin picking. They are long, flexible and tend to get entangled when randomly placed in a bin. This makes the robot struggle to pick a single one from the clutter. Besides, modeling wire harnesses is difficult due to the complex structures of combining deformable cables with rigid components, making it unsuitable for training or collecting data in simulation. In this work, instead of directly lifting wire harnesses, we proposed to grasp and extract the target following circle-like trajectories until it is separated from the clutter. We learn a policy from real-world data to infer the optimal action and grasp from visual observation. Our policy enables the robot to perform non-tangle pickings efficiently by maximizing success rates and reducing the execution time. To evaluate our policy, we present a set of real-world experiments on picking wire harnesses. Results show a significant improvement in success rates from 49.2% to 84.6% over the tangle-agnostic bin picking method. We also evaluate the effectiveness of our policy under different clutter scenarios using unseen types of wire harnesses. The proposed method is expected to provide a practical solution for automating manufacturing processes with wire harnesses.
翻译:电线带是制造业中关键的连接部件, 但是在像垃圾桶摘取这样的工业任务中是具有挑战性的。 它们长, 灵活, 并且往往在随机放置在垃圾桶中时被缠住。 这让机器人在从垃圾桶中挑一个。 此外, 模拟电线带由于将硬质部件的变形电缆组合在一起的复杂结构而困难重重, 这使得它不适合在模拟中训练或收集数据。 在这项工作中, 我们提议从直接提升铁丝带, 而不是直接提升电线带, 而是要捕捉和提取以下的圆形轨迹, 直到它从垃圾桶中分离出来。 我们从真实世界数据中学习了一种政策, 从视觉观察中推断出最佳的行动和捕捉。 我们的政策使得机器人能够通过最大限度地提高成功率和缩短执行时间来高效地捕捉。 为了评估我们的政策, 我们提出了一套关于采集电线带装置的实际实验。 结果显示成功率从49.2%提高到84.6%, 直至从缠绕式的垃圾桶拾取方法。 我们还从现实世界中评估了我们的政策的有效性, 使用一种不争测的电路图提供了一种预期的方法。