This paper describes the design and evaluation of DSAScratch, an extension to Scratch, a widely used block-based programming language. The DSAScratch framework implements advanced data structures such as arrays, sets, dictionaries, and searching and sorting algorithms. By presenting these concepts in an intuitive block-based interface, these blocks abstract away technical details and simplify data structures and algorithms concepts for K-12 students to grasp and apply to programming problems more readily. A preliminary evaluation of the tool's usability and learning outcomes is presented in this paper. Given the information we have gathered about DSAScratch, we show that the extension is beneficial for students to develop a deeper understanding of programming and an intuitive understanding of these concepts in high school. We present the methodology and preliminary results of a user study conducted with ten high school students. During the user study, 70% of the participants understood the key ideas behind DSAScratch implemented data structures and algorithms through a mixture of lectures and hands-on activities. We show that DSAScratch was also an important part of the workshop for 90% of the students who participated, as it enhanced their understanding of algorithms and data structures. Furthermore, they indicated that they would recommend DSAScratch to their peers.


翻译:本文描述了DSAScratch的设计和评价,DSAScratch是一个广泛使用的区块编程语言的扩展,Scratch是一种广泛使用的区块编程语言。DSAScratch框架采用先进的数据结构,如阵列、数据集、字典、搜索和排序算法等。通过在直观的区块界面中介绍这些概念,这些区块将抽象地删除技术细节,简化数据结构和算法概念,供K-12学生更容易掌握和运用于编程问题。本文介绍了对该工具的可用性和学习成果的初步评价。根据我们所收集的关于DSAScratch的信息,我们表明这一扩展有利于学生加深对编程的了解和对高中中这些概念的直观理解。我们介绍了与10名高中学生进行的一项用户研究的方法和初步结果。在用户研究期间,70%的学员理解了DSAScratch通过讲座和亲身活动混合执行数据结构和算法。我们表明,DSAScratch也是90%参加讲习班的学生的一个重要部分。此外,他们还表明,他们对SAS级结构的理解将会加强。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
30+阅读 · 2021年8月18日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员