Linguists distinguish between novel and conventional metaphor, a distinction which the metaphor detection task in NLP does not take into account. Instead, metaphoricity is formulated as a property of a token in a sentence, regardless of metaphor type. In this paper, we investigate the limitations of treating conventional metaphors in this way, and advocate for an alternative which we name 'metaphorical polysemy detection' (MPD). In MPD, only conventional metaphoricity is treated, and it is formulated as a property of word senses in a lexicon. We develop the first MPD model, which learns to identify conventional metaphors in the English WordNet. To train it, we present a novel training procedure that combines metaphor detection with word sense disambiguation (WSD). For evaluation, we manually annotate metaphor in two subsets of WordNet. Our model significantly outperforms a strong baseline based on a state-of-the-art metaphor detection model, attaining an ROC-AUC score of .78 (compared to .65) on one of the sets. Additionally, when paired with a WSD model, our approach outperforms a state-of-the-art metaphor detection model at identifying conventional metaphors in text (.659 F1 compared to .626).
翻译:语言学家区分了新式和传统隐喻, NLP 中的比喻检测任务没有考虑到这种比喻的区别。 相反, 隐喻在句子中是一种象征属性的属性, 不论隐喻类型如何。 在本文中, 我们调查用这种方式处理传统隐喻的局限性, 并倡导一种我们命名为“ 超光谱多采探测( MPD ) ” ( MPD ) 的替代方法。 在MPD 中, 仅将传统隐喻作为传统隐喻的属性, 在词汇典中, 我们开发了第一个 MPD 模型, 学会在英语 WordNet 中辨别传统隐喻。 为了培训它, 我们提出了一个新颖的培训程序, 将隐喻探测与词感模糊( WSDDD) (WSDD D) 相结合。 为了评估, 我们在WDNet 的两组中手动隐喻了隐喻。 我们的模型大大超越了基于最先进的隐喻检测模型的强基线, 达到 ROC- AUC 78 的分数 。 (与. 65 ) 在其中一组中, 。 此外, 当与WSD 6 类比喻的比喻模型比喻 6 时, 我们的方法比F26 。