Artificial neural networks have realized incredible successes at image recognition, but the underlying mechanism of visual space representation remains a huge mystery. Grid cells (2014 Nobel Prize) in the entorhinal cortex support a periodic representation as a metric for coding space. Here, we develop a self-supervised convolutional neural network to perform visual space location, leading to the emergence of single-slit diffraction and double-slit interference patterns of waves. Our discoveries reveal the nature of CNN encoding visual space to a certain extent. CNN is no longer a black box in terms of visual spatial encoding, it is interpretable. Our findings indicate that the periodicity property of waves provides a space metric, suggesting a general role of spatial coordinate frame in artificial neural networks.
翻译:人造神经网络在图像识别方面取得了令人难以置信的成功,但视觉空间代表的基本机制仍是一个巨大的谜。 内心皮层中的网格细胞( 2014 诺贝尔奖)支持定期展示,作为编码空间的度量。 在这里,我们开发了一个自我监督的进化神经网络,以进行视觉空间定位,导致出现单线分裂和双线干扰波浪模式。我们的发现在某种程度上揭示了CNN编码视觉空间的性质。CNN不再是视觉空间编码的黑盒,可以解释它。我们的发现表明,波的周期特性提供了空间测量,表明空间协调框架在人造神经网络中的一般作用。