项目名称: 石墨烯纳米孔分解分子的调控机制研究

项目编号: No.11474123

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 王晓春

作者单位: 吉林大学

项目金额: 80万元

中文摘要: 光合作用是生物转化存储太阳能的有效方式,对环境无污染。模仿光合作用,开发清洁能源材料,有助于解决雾霾等环境污染问题。本课题拟运用第一性原理计算和实验检验相结合的方法,来研究石墨烯纳米孔分解分子和隔离生成物的调控机制,以模仿光合作用中的生物膜,同时实现分解和隔离这两项功能。前期研究发现,石墨烯纳米孔可以通过纳米拉力效应同时实现分解分子和隔离生成物这两项功能。本课题要深入研究纳米拉力效应的形成原因,以及不同原子修饰的纳米孔对分解分子和隔离产物的影响机制。并进一步探索电场或磁场对纳米孔分解分子和隔离产物的调控机制,以建立对该过程的人工调控理论模型。最后,利用石墨烯薄膜材料的实验来检验调控理论模型。研究成果将有助于从原子分子层次上,深入揭示光合作用的生物物理机制,为设计含能材料和模仿光合作用的清洁能源材料开辟新的有效途径。

中文关键词: 清洁能源材料;仿生材料;石墨烯;有序纳米孔;第一性原理

英文摘要: Photosynthesis is an effective way to convert and store solar energy in nature, and avoid environmental pollution. Mimic photosynthesis for the development of clean energy materials will help to solve environmental problems such as haze. This project will study the biophysics mechanism that different atoms functional graphene nanopores dissociate molecule and separate the products, using the use the combination methods of the first-principles calculations and the experiment verification. The aim of this project is to simulate the biofilm in the photosynthesis, and realize the dissociation and separation processes. Our preliminary results indicate that graphene ordered nanopores can realize these processes that reduce the reaction barrier of molecular bond dissociation and effectively separate the products spatially through a novel nano-pulling effect. This project will study the mechanism of the nano-pulling, and the controlling mechanism that different atoms functional graphene nanopores dissociate molecule and separate the products. This project will further explore the mechanism of effective method how to controlling molecular dissociation and products separation using the electric or magnetic fields. Then the theory model of controlling these processes will be set up. At last, this theory model will be tested through grahpene experiment. This research will help to further reveal the biophysical mechanism of photosynthesis at atomic and molecular level. This may open up new effective avenues for the designs of energetic material and clean energy material of biomimic photosynthesizer to use solar energy.

英文关键词: Clean Energy Materials;Biomimic Materials;Graphene;Ordered Nanopores;First-Principles

成为VIP会员查看完整内容
0

相关内容

【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
34+阅读 · 2021年10月17日
专知会员服务
31+阅读 · 2021年10月12日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
小贴士
相关主题
相关VIP内容
【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
34+阅读 · 2021年10月17日
专知会员服务
31+阅读 · 2021年10月12日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
相关资讯
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员