Mechanical systems naturally evolve on principal bundles describing their inherent symmetries. The ensuing factorization of the configuration manifold into a symmetry group and an internal shape space has provided deep insights into the locomotion of many robotic and biological systems. On the other hand, the property of differential flatness has enabled efficient, effective planning and control algorithms for various robotic systems. Yet, a practical means of finding a flat output for an arbitrary robotic system remains an open question. In this work, we demonstrate surprising new connections between these two domains, for the first time employing symmetry directly to construct a flat output. We provide sufficient conditions for the existence of a trivialization of the bundle in which the group variables themselves are a flat output. We call this a geometric flat output, since it is equivariant (i.e. maintains the symmetry) and is often global or almost-global, properties not typically enjoyed by other flat outputs. In such a trivialization, the motion planning problem is easily solved, since a given trajectory for the group variables will fully determine the trajectory for the shape variables that exactly achieves this motion. We provide a partial catalog of robotic systems with geometric flat outputs and worked examples for the planar rocket, planar aerial manipulator, and quadrotor.
翻译:在描述其内在对称性的主要捆绑上自然的机械系统自然演变。 随之而来, 配置方块的乘数变成一个对称组和内部形状空间的乘数为许多机器人和生物系统的移动提供了深刻的洞察力。 另一方面, 差异平坦的特性使得各种机器人系统的高效、有效规划和控制算法得以实现。 然而, 为任意机器人系统找到一个平流输出的实用方法仍然是一个尚未解决的问题。 在这项工作中, 我们展示了这两个领域之间令人惊讶的新连接, 首次使用对称来直接构建一个平坦输出。 我们为组合变量本身是一个平坦输出的捆绑提供了足够条件。 我们称之为几何平坦输出, 因为它是静态( 维持对称性), 并且通常是全球性或几乎全球性的, 通常不会被其他平流输出所利用的特性。 在这种小化中, 移动规划问题很容易解决, 因为给组变量设定的轨迹将完全决定成形变量的轨迹。 我们为精确实现这一运动的形状变量提供了一个微化轨迹。 我们为平坦的火箭仪式计划提供了部分的模型, 我们为平坦的平面的机器人系统提供了一个平流图。