In the decision tree computation model for Boolean functions, the depth corresponds to query complexity, and size corresponds to storage space. The depth measure is the most well-studied one, and is known to be polynomially related to several non-computational complexity measures of functions such as certificate complexity. The size measure is also studied, but to a lesser extent. Another decision tree measure that has received very little attention is the minimal rank of the decision tree, first introduced by Ehrenfeucht and Haussler in 1989. This measure is closely related to the logarithm of the size, but is not polynomially related to depth, and hence it can reveal additional information about the complexity of a function. It is characterised by the value of a Prover-Delayer game first proposed by Pudl\'ak and Impagliazzo in the context of tree-like resolution proofs. In this paper we study this measure further. We obtain an upper bound on depth in terms of rank and Fourier sparsity. We obtain upper and lower bounds on rank in terms of (variants of) certificate complexity. We also obtain upper and lower bounds on the rank for composed functions in terms of the depth of the outer function and the rank of the inner function. This allow us to easily recover known asympotical lower bounds on logarithm of the size for Iterated AND-OR and Iterated 3-bit Majority. We compute the rank exactly for several natural functions and use them to show that all the bounds we have obtained are tight. We also show that rank in the simple decision tree model can be used to bound query complexity, or depth, in the more general conjunctive decision tree model. Finally, we improve upon the known size lower bound for the Tribes function and conclude that in the size-rank relationship for decision trees, obtained by Ehrenfeucht and Haussler, the upper bound for Tribes is asymptotically tight.


翻译:在 Boolean 函数的决策树计算模型中, 深度与查询复杂性相匹配, 大小与存储空间相匹配。 深度度量是研究最深的, 并且已知与证书复杂性等若干功能的非计算性复杂度有关。 尺寸度量也进行了研究, 但程度稍小。 另一项决定树测量非常少受到注意的是决定树的最小等级, 首先是Ehrenfeucht 和Haussler 于1989年推出的。 这一度量量量与大小的对数密切相关, 但与深度不完全相关, 因而它能够揭示关于功能复杂性的更多信息。 以Prover- Delay 游戏的价值为特征, 例如, Pudlarl\ak 和 Impalgliazzo 首次在树分辨率证明中提议。 在本文中, 我们通过级别和 Fourier 级的深度的深度来获得一个上下限。 我们从级别上到下一级, 以( 变量) 直径直径直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径,, 。 我们也可以判的直至直至直径直径直至直至直至直直至直至直至直至直直直至直直径直径直径直直至直至直至直直直至直直直直直径直径直直至直直直至直至直至直至直直直直直直至直至直至直至直至直至直至直至直直直直直直至直至直至直至直至直至直至直至直至直至直至直至直至直直直至直至直至直直直直直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直直至直至直至直至直至直至直至直至直至直直直直直直直直至直至直至直至直至直至直至直至直至直至直至直至直

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
0+阅读 · 2022年11月1日
Arxiv
0+阅读 · 2022年11月1日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员