In this paper, we consider testing the martingale difference hypothesis for high-dimensional time series. Our test is built on the sum of squares of the element-wise max-norm of the proposed matrix-valued nonlinear dependence measure at different lags. To conduct the inference, we approximate the null distribution of our test statistic by Gaussian approximation and provide a simulation-based approach to generate critical values. The asymptotic behavior of the test statistic under the alternative is also studied. Our approach is nonparametric as the null hypothesis only assumes the time series concerned is martingale difference without specifying any parametric forms of its conditional moments. As an advantage of Gaussian approximation, our test is robust to the cross-series dependence of unknown magnitude. To the best of our knowledge, this is the first valid test for the martingale difference hypothesis that not only allows for large dimension but also captures nonlinear serial dependence. The practical usefulness of our test is illustrated via simulation and a real data analysis. The test is implemented in a user-friendly R-function.


翻译:在本文中, 我们考虑测试高维时间序列的 Martingale 差异假设。 我们的测试建立在拟议矩阵估值的非线性依赖度测量的元素- 最大向量的正方方和不同的时滞。 为了进行推论, 我们用高西亚近似值来估计测试统计数据的无效分布, 并提供基于模拟的方法来生成关键值。 还研究了替代数据下测试统计的无线行为。 我们的方法是非参数的。 我们的方法是非参数的, 因为空虚假设仅假设相关的时间序列是马丁ale 差异, 而没有具体说明其条件时刻的任何参数形式。 作为高斯近似法的优势, 我们的测试对未知规模的跨序列依赖性是强大的。 据我们所知, 这是对马丁格尔差异假设的第一个有效测试, 不仅允许大维度, 而且还能捕捉非线性序列依赖性。 我们的测试的实际效用通过模拟和真实的数据分析来说明。 测试是在方便用户的功能下进行。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月5日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
0+阅读 · 2022年11月3日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员