A commonly observed problem with abstractive summarization is the distortion or fabrication of factual information in the article. This inconsistency between summary and original text has led to various concerns over its applicability. In this paper, we propose to boost factual correctness of summaries via the fusion of knowledge, i.e. extracted factual relations from the article. We present a Fact-Aware Summarization model, FASum. In this model, the knowledge information can be organically integrated into the summary generation process via neural graph computation and effectively improves the factual correctness. Empirical results show that FASum generates summaries with significantly higher factual correctness compared with state-of-the-art abstractive summarization systems, both under an independently trained factual correctness evaluator and human evaluation. For example, in CNN/DailyMail dataset, FASum obtains 1.2% higher fact correctness scores than UniLM and 4.5% higher than BottomUp.


翻译:一个常见的抽象总结问题就是文章中事实信息的歪曲或编造。摘要和原始文本之间的这种不一致导致人们对其适用性的各种关切。在本文中,我们提议通过综合知识,即从文章中摘取事实关系,来提高摘要的事实正确性。我们提出了一个事实软件总结模型FASum。在这个模型中,知识信息可以通过神经图计算有机地融入摘要生成过程,并有效地改善事实正确性。经验性结果表明,FASum生成摘要时,与最先进的抽象总结系统相比,事实正确性要高得多,两者都是在经过独立培训的事实正确性评估和人类评估之下。例如,在CNN/DailyMail数据集中,FASum获得比ULM高1.2%的事实正确性分数,比PownUP高出4.5%。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员