Novice pilots find it difficult to operate and land unmanned aerial vehicles (UAVs), due to the complex UAV dynamics, challenges in depth perception, lack of expertise with the control interface and additional disturbances from the ground effect. Therefore we propose a shared autonomy approach to assist pilots in safely landing a UAV under conditions where depth perception is difficult and safe landing zones are limited. Our approach comprises of two modules: a perception module that encodes information onto a compressed latent representation using two RGB-D cameras and a policy module that is trained with the reinforcement learning algorithm TD3 to discern the pilot's intent and to provide control inputs that augment the user's input to safely land the UAV. The policy module is trained in simulation using a population of simulated users. Simulated users are sampled from a parametric model with four parameters, which model a pilot's tendency to conform to the assistant, proficiency, aggressiveness and speed. We conduct a user study (n = 28) where human participants were tasked with landing a physical UAV on one of several platforms under challenging viewing conditions. The assistant, trained with only simulated user data, improved task success rate from 51.4% to 98.2% despite being unaware of the human participants' goal or the structure of the environment a priori. With the proposed assistant, regardless of prior piloting experience, participants performed with a proficiency greater than the most experienced unassisted participants.
翻译:由于无人驾驶飞行器的动态复杂、深度认知困难、缺乏控制界面方面的专门知识、地面效应引起的更多干扰,无人驾驶飞行器(无人驾驶飞行器)难以操作和着陆,原因是无人驾驶飞行器动态复杂、深度认知困难、安全着陆区有限,因此,我们建议采取共同自主办法,协助飞行员在深度认知困难、安全着陆区有限的条件下安全降落无人驾驶飞行器。我们的方法包括两个模块:将信息编码成压缩潜代表的感知模块,使用两部RGB-D摄像机,以及一个政策模块,接受强化学习算法TD3的培训,以辨别飞行员的意图,并提供控制投入,从而增加用户对无人驾驶飞行器安全降落的投入。政策模块接受模拟培训,使用模拟用户群进行模拟培训。模拟模型从具有四个参数的参数模拟用户样本,模拟用户从一个模拟模型的模型中抽取信息,将信息输入到压缩潜伏代表处,使用两部RGB-D摄像机,我们进行用户研究(n=28),在有挑战性条件下,在多个平台中,由人类参与者负责在其中一个平台上着陆,仅接受模拟用户数据培训,提高任务成功率率,从51.4%到98.2%的参与者,而没有事先的参与者没有事先意识试点经验,而没有事先的参与者,而没有经验。