Motivated by scenarios where data is used for diverse prediction tasks, we study whether fair representation can be used to guarantee fairness for unknown tasks and for multiple fairness notions simultaneously. We consider seven group fairness notions that cover the concepts of independence, separation, and calibration. Against the backdrop of the fairness impossibility results, we explore approximate fairness. We prove that, although fair representation might not guarantee fairness for all prediction tasks, it does guarantee fairness for an important subset of tasks -- the tasks for which the representation is discriminative. Specifically, all seven group fairness notions are linearly controlled by fairness and discriminativeness of the representation. When an incompatibility exists between different fairness notions, fair and discriminative representation hits the sweet spot that approximately satisfies all notions. Motivated by our theoretical findings, we propose to learn both fair and discriminative representations using pretext loss which self-supervises learning, and Maximum Mean Discrepancy as a fair regularizer. Experiments on tabular, image, and face datasets show that using the learned representation, downstream predictions that we are unaware of when learning the representation indeed become fairer for seven group fairness notions, and the fairness guarantees computed from our theoretical results are all valid.


翻译:我们根据数据被用于不同预测任务的设想,研究公平代表性是否可以同时用于保证对未知任务和多重公平概念的公平性。我们考虑七个群体公平概念,涵盖独立、分离和校准的概念。在公平性不可能取得结果的背景下,我们探索了近似公平性。我们证明,虽然公平代表性可能无法保证所有预测任务的公平性,但它确实保证了重要任务 -- -- 即代表具有歧视性的任务 -- -- 的公平性。具体地说,所有七个群体公平概念都受到公平性和代表性歧视性的线性控制的线性控制。当不同公平概念之间存在不一致时,公平和歧视性的公平代表性就会达到大致满足所有概念的甜点。根据我们的理论结论,我们提议利用自我超越学习的借口损失以及作为公平规则性的最大中度差异性来学习公平和歧视性的表述。关于表格、图像和面形数据集的实验表明,利用所学得到的代表性,当我们了解代表的7个群体公平概念确实更加公平时,我们不知道的下游预测是有效的。我们从理论结果中得出的公平性保证都是有效的。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
35+阅读 · 2021年7月7日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月24日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
35+阅读 · 2021年7月7日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员