During the last years, many advances have been made in tasks like3D model retrieval, 3D model classification, and 3D model segmentation.The typical 3D representations such as point clouds, voxels, and poly-gon meshes are mostly suitable for rendering purposes, while their use forcognitive processes (retrieval, classification, segmentation) is limited dueto their high redundancy and complexity. We propose a deep learningarchitecture to handle 3D models as an input. We combine this architec-ture with other standard architectures like Convolutional Neural Networksand autoencoders for computing 3D model embeddings. Our goal is torepresent a 3D model as a vector with enough information to substitutethe 3D model for high-level tasks. Since this vector is a learned repre-sentation which tries to capture the relevant information of a 3D model,we show that the embedding representation conveys semantic informationthat helps to deal with the similarity assessment of 3D objects. Our ex-periments show the benefit of computing the embeddings of a 3D modeldata set and use them for effective 3D Model Retrieval.
翻译:在过去几年里,在诸如 3D 模型检索、 3D 模型分类和 3D 模型分割等任务中取得了许多进步。 典型的 3D 表示式, 如点云、 voxels 和 多边- 多边形模形等, 大多适合用于制作目的, 而它们用于认知过程( retriewval、 分类、 sectionation) 的用途有限, 因为它们的冗余性和复杂性很高。 我们建议使用一个深层次的学习结构来处理 3D 模型, 作为一种输入。 我们将这个考古结构与其他标准结构, 如 Convolucial Neal 网络和 自动编码器 结合起来, 用于计算 3D 模型嵌入。 我们的目标是将一个 3D 模型模型作为矢量的矢量作为矢量, 用来替代高级任务。 由于此矢量是一种学习的批量, 试图捕捉到 3D 模型的相关信息, 我们显示嵌入式表示有助于处理 3D 对象的相似性评估。 我们的外观展示了计算 3D 3D 模型集的嵌入的好处 并用于 3D 3D 模式 。