We propose a new variant of Chubanov's method for solving the feasibility problem over the symmetric cone by extending Roos's method (2018) for the feasibility problem over the nonnegative orthant. The proposed method considers a feasibility problem associated with a norm induced by the maximum eigenvalue of an element and uses a rescaling focusing on the upper bound of the sum of eigenvalues of any feasible solution to the problem. Its computational bound is (i) equivalent to Roos's original method (2018) and superior to Louren\c{c}o et al.'s method (2019) when the symmetric cone is the nonnegative orthant, (ii) superior to Louren\c{c}o et al.'s method (2019) when the symmetric cone is a Cartesian product of second-order cones, and (iii) equivalent to Louren\c{c}o et al.'s method (2019) when the symmetric cone is the simple positive semidefinite cone, under the assumption that the costs of computing the spectral decomposition and the minimum eigenvalue are of the same order for any given symmetric matrix. We also conduct numerical experiments that compare the performance of our method with existing methods by generating instance in three types: (i) strongly (but ill-conditioned) feasible instances, (ii) weakly feasible instances, and (iii) infeasible instances. For any of these instances, the proposed method is rather more efficient than the existing methods in terms of accuracy and execution time.
翻译:我们建议采用Chubanov的新方法新变式,通过扩展Roos的方法(2018年)解决对称锥体的可行性问题,以扩大Roos的方法(2018年)解决对称锥体在非阴性或坦邦之间的可行性问题。拟议方法考虑了与一个元素的最大偏皮值所引发的规范相关的可行性问题,并用一个调整法,侧重于任何可行解决办法的碳酸盐值总和的上限。它的计算界限是(i)相当于Roos的原方法(2018年),优于Louren\c{c}o et al.的方法(2019年),当对等同式的直线体为非阴性或坦邦之间(2019年),当对准性等式的精度直直度为非阴性,(ii)优于Louren\c{c{c}o等人的方法(2019年),当正对现行光谱法方法进行精确度分析时,我们现有三类的计算方法进行最起码的运行成本,(我们目前测算的基数方法)以强推估测的模型,(我们目前测测测算方法进行最低的模型的计算方法,这些成本),以比现行测测算方法进行任何最低的基数方法。(我们目前测算算算算算的基数方法,以基底算算算算算算算的基数方法。