A mapping $\alpha : V(G) \to V(H)$ from the vertex set of one graph $G$ to another graph $H$ is an isometric embedding if the shortest path distance between any two vertices in $G$ equals the distance between their images in $H$. Here, we consider isometric embeddings of a weighted graph $G$ into unweighted Hamming graphs, called Hamming embeddings, when $G$ satisfies the property that every edge is a shortest path between its endpoints. Using a Cartesian product decomposition of $G$ called its pseudofactorization, we show that every Hamming embedding of $G$ may be partitioned into Hamming embeddings for each irreducible pseudofactor graph of $G$, which we call its canonical partition. This implies that $G$ permits a Hamming embedding if and only if each of its irreducible pseudofactors is Hamming embeddable. This result extends prior work on unweighted graphs that showed that an unweighted graph permits a Hamming embedding if and only if each irreducible pseudofactor is a complete graph. When a graph $G$ has nontrivial pseudofactors, determining whether $G$ has a Hamming embedding can be simplified to checking embeddability of two or more smaller graphs.


翻译:映射 $ ALpha : V( G)\ a (H) 映射 $ : V( G)\ a( G) 至 V( H) $ 。 从一个图形的顶端集, V( G) 美元到另一个图形的顶点, V( G) 美元 $( G) 美元 $( H) 。 如果以美元计算的任何两个顶点之间的最短路径距离, 以美元计算的任何两个顶点之间的最短路径距离等于以美元表示图像之间的距离。 这里, 我们考虑将一个加权图形( G) $( $) 嵌入未加权的 Hammum 地图, 称为 Hamming 嵌入 : $( Hamm), $( g) 满足了每个边缘是其端点之间的最短路径。 使用卡通的 $( g) $( $) 的卡通产品分解调, 称为它的假相形图, 我们显示, $( G) $ ( ) $ ( ) ) 每一个不加权 或 硬形图显示一个不精化的底图是否 显示一个不精化的硬化的硬化图, 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
0+阅读 · 2022年2月11日
VIP会员
相关资讯
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员