An $r$-quasiplanar graph is a graph drawn in the plane with no $r$ pairwise crossing edges. We prove that there is a constant $C>0$ such that for any $s>2$, every $2^s$-quasiplanar graph with $n$ vertices has at most $n(\frac{C\log n}{s})^{2s-4}$ edges. A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a string graph. We show that for every $\epsilon>0$, there exists $\delta>0$ such that every string graph with $n$ vertices, whose chromatic number is at least $n^{\epsilon}$ contains a clique of size at least $n^{\delta}$. A clique of this size or a coloring using fewer than $n^{\epsilon}$ colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings. In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erd\H os, Gallai, and Rogers. Given a $K_r$-free graph on $n$ vertices and an integer $s<r$, at least how many vertices can we find such that the subgraph induced by them is $K_s$-free?


翻译:美元平面图是一张在平面上绘制的图表,没有美元平面交叉边缘。我们证明有一个固定的 $C>0 美元,对于任何$>2美元,每2美元,每2美元平面图,每2美元平面图,有1美元正方平面,有1美元正方平面,有1美元正方平面。一个图,其顶端是平面上连续的曲线,两张正平面曲线连接,两张平面图,如果是一个平面,只有它们相互交错,就被称为字符平面图。我们显示,每1美元正平面图,每张每张正平面图都有1美元,每张正平面图至少有1美元正方平面大小。这种大小或彩色的曲线,在直面上方平面的平面上可以找到一个最不固定的平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。

0
下载
关闭预览

相关内容

【经典书】图论,322页pdf
专知会员服务
123+阅读 · 2021年10月14日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
0+阅读 · 2022年2月11日
VIP会员
相关VIP内容
【经典书】图论,322页pdf
专知会员服务
123+阅读 · 2021年10月14日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员