Knowledge tracing (KT) is a crucial technique to predict students' future performance by observing their historical learning processes. Due to the powerful representation ability of deep neural networks, remarkable progress has been made by using deep learning techniques to solve the KT problem. The majority of existing approaches rely on the \emph{homogeneous question} assumption that questions have equivalent contributions if they share the same set of knowledge components. Unfortunately, this assumption is inaccurate in real-world educational scenarios. Furthermore, it is very challenging to interpret the prediction results from the existing deep learning based KT models. Therefore, in this paper, we present QIKT, a question-centric interpretable KT model to address the above challenges. The proposed QIKT approach explicitly models students' knowledge state variations at a fine-grained level with question-sensitive cognitive representations that are jointly learned from a question-centric knowledge acquisition module and a question-centric problem solving module. Meanwhile, the QIKT utilizes an item response theory based prediction layer to generate interpretable prediction results. The proposed QIKT model is evaluated on three public real-world educational datasets. The results demonstrate that our approach is superior on the KT prediction task, and it outperforms a wide range of deep learning based KT models in terms of prediction accuracy with better model interpretability. To encourage reproducible results, we have provided all the datasets and code at \url{https://pykt.org/}.


翻译:通过观察历史学习过程来预测学生未来表现的关键技术是知识追踪(KT),这是预测学生未来表现的关键技术。由于深层神经网络具有强大的代表性能力,因此通过使用深层学习技术解决KT问题,取得了显著的进展。大多数现有方法都依赖于以下假设:如果问题具有相同的一套知识组成部分,那么它们就具有同等的贡献。不幸的是,在现实世界的教育情景中,这一假设是不准确的。此外,解释基于基于现有深层学习的KT模型的预测结果是非常困难的。因此,在本文中,我们提出了以问题为中心的KKKT模型,这是一个可以解释的KT模型,用以应对上述挑战。拟议的QKKT方法明确模拟学生的知识变异于细微微的模型,在以问题为中心的知识获取模块和以问题为中心的问题解决问题解决模块中共同学习。与此同时,QIKKT模型利用基于预测层的项目反应理论来产生可解释的预测结果。拟议的QIKT模型以三种以问题为中心解释的KKKT模型来评估三种以公共真实性和高端教育术语的精确性数据预测。结果以我们提供了在现实和高端学习的KWT的模型。 提供了一种数据分析模型。结果。根据我们在高端的模型和高端的模型提供了一种数据分析结果。提供我们在高空的模型。</s>

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
21+阅读 · 2022年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员