We study the problem of finding a near-stationary point for smooth minimax optimization. The recent proposed extra anchored gradient (EAG) methods achieve the optimal convergence rate for the convex-concave minimax problem in deterministic setting. However, the direct extension of EAG to stochastic optimization is not efficient. In this paper, we design a novel stochastic algorithm called Recursive Anchored IteratioN (RAIN). We show that the RAIN achieves near-optimal stochastic first-order oracle complexity for stochastic minimax optimization in both convex-concave and strongly-convex-strongly-concave cases.
翻译:我们研究了寻找近乎静止的点的问题,以便顺利地优化小型马克思。最近提出的额外固定梯度方法(EAG)在确定性环境下实现了 convex-concave miniax问题的最佳趋同率。然而,将EAG直接延伸至随机优化效率不高。在本文中,我们设计了一种新型的随机算法,名为Recursiive Ancrocred IteratioN (RAIN ) 。我们显示,REAIN在 convex- concave 和 强凝固混凝土案例中,都实现了近于最佳的随机第一级或最尖端的微轴优化。