Recently, code-oriented large language models (Code LLMs) have been widely and successfully used to simplify and facilitate code programming. With these tools, developers can easily generate desired complete functional codes based on incomplete code and natural language prompts. However, a few pioneering works revealed that these Code LLMs are also vulnerable, e.g., against backdoor and adversarial attacks. The former could induce LLMs to respond to triggers to insert malicious code snippets by poisoning the training data or model parameters, while the latter can craft malicious adversarial input codes to reduce the quality of generated codes. However, both attack methods have underlying limitations: backdoor attacks rely on controlling the model training process, while adversarial attacks struggle with fulfilling specific malicious purposes. To inherit the advantages of both backdoor and adversarial attacks, this paper proposes a new attack paradigm, i.e., target-specific and adversarial prompt injection (TAPI), against Code LLMs. TAPI generates unreadable comments containing information about malicious instructions and hides them as triggers in the external source code. When users exploit Code LLMs to complete codes containing the trigger, the models will generate attacker-specified malicious code snippets at specific locations. We evaluate our TAPI attack on four representative LLMs under three representative malicious objectives and seven cases. The results show that our method is highly threatening (achieving an attack success rate of up to 98.3%) and stealthy (saving an average of 53.1% of tokens in the trigger design). In particular, we successfully attack some famous deployed code completion integrated applications, including CodeGeex and Github Copilot. This further confirms the realistic threat of our attack.
翻译:暂无翻译