This paper presents an aggressive trajectory tracking method for a small lightweight nano-quadrotor using nonlinear model predictive control (NMPC) based on acados. Controlling a nano quadrotor for accurate trajectory tracking at high speed in dynamic environments is challenging due to complex aerodynamic forces that introduce significant disturbances and large positional tracking errors. These aerodynamic effects are difficult to be identified and require feedback control that compensates for them in real time. NMPC allows the nano-quadrotor to control its motion in real time based on onboard sensor measurements, making it well-suited for tasks such as aggressive maneuvers and navigation in complex and dynamic environments. The software package acados enables the implementation of the NMPC algorithm on embedded systems, which is particularly important for nano-quadrotor due to its limited computational resources. Our autonomous navigation system is developed based on an AI-deck that is a GAP8-based parallel ultra-low power computing platform with onboard sensors of a multi-ranger deck and a flow deck. The proposed method of NMPC-based trajectory tracking control is tested in simulation and the results demonstrate its effectiveness in trajectory tracking while considering the dynamic environments. It is also tested on a real nano quadrotor hardware, 27-g Crazyflie 2.1, with a customized MCU running embedded NMPC, in which accurate trajectory tracking results are achieved in dynamic real-world environments.
翻译:暂无翻译