This article extends the widely-used synthetic controls estimator for evaluating causal effects of policy changes to quantile functions. The proposed method provides a geometrically faithful estimate of the entire counterfactual quantile function of the treated unit. Its appeal stems from an efficient implementation via a constrained quantile-on-quantile regression. This constitutes a novel concept of independent interest. The method provides a unique counterfactual quantile function in any scenario: for continuous, discrete or mixed distributions. It operates in both repeated cross-sections and panel data with as little as a single pre-treatment period. The article also provides abstract identification results by showing that any synthetic controls method, classical or our generalization, provides the correct counterfactual for causal models that preserve distances between the outcome distributions. Working with whole quantile functions instead of aggregate values allows for tests of equality and stochastic dominance of the counterfactual- and the observed distribution. It can provide causal inference on standard outcomes like average- or quantile treatment effects, but also more general concepts such as counterfactual Lorenz curves or interquartile ranges.


翻译:本条扩展了用于评价政策变化对四分位函数的因果关系的广泛使用的合成控制估计值。 拟议的方法提供了对被处理单位整个反事实量化功能的几何精确估计值。 它的吸引力来自通过受限制的四分位数对量回归的高效执行。 这是独立利益的新概念。 这种方法在任何情景中都提供了一个独特的反事实量化函数: 连续、 离散或混合分布。 它在重复的交叉和面板数据中运作,只有单一的预处理期。 该条还提供了抽象的识别结果, 显示任何合成控制方法, 无论是古典还是我们的一般化, 都为保持结果分布间距离的因果关系模型提供了正确的反事实。 与整分位数函数合作, 使得可以测试反事实分布和观察到的分布的平等性和随机支配性。 它可以提供对标准结果的因果关系推论, 如平均或孔位处理效果, 但也提供了比较一般的概念, 如反事实Lorenz曲线或内部分布。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员